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A numerical study is described of the Boussinesq flow past a sphere of a viscous, 
incompressible and non-diffusive stratified fluid. The approaching flow has uniform 
velocity and linear stratification. The Reynolds number Re ( = 2poUa/p) based on 
the sphere diameter is 200 and the internal Froude number F (  = U / N a )  is varied 
from 0.25 to 200. Here U is the velocity, N the Brunt-Vaisala frequency, a the radius 
of the sphere, p the viscosity and po the mean density, The numerical results show 
changes in the flow pattern with Froude number that are in good agreement with 
earlier theoretical and experimental results. For F < 1, the calculations show the 
flow passing round rather than going over the obstacle, and confirm Sheppard’s 
simple formula for the dividing-streamline height. When the Froude number is 
further reduced (F  < 0.4), the flow becomes approximately two-dimensional and 
qualitative agreement with Drazin’s three-dimensional low-Froude-number theory is 
obtained. The relation between the wavelength of the internal gravity wave and the 
position of laminar separation on the sphere is also investigated to  obtain the 
suppression and induction of separation by the wave. It is also found that the lee 
waves are confined in the spanwise direction to a rather narrow strip just behind the 
obstacle as linear theory predicts. The calculated drag coefficient C, of the sphere 
shows an interesting Froude-number dependence, which is quite similar to  the results 
given by experiments. In  this study not only C, but also the pressure distribution 
which contributes to the change of C, are obtained and the mechanism of the change 
is closely examined. 

1. Introduction 
Stratified flows past an obstacle have been studied both theoretically and 

experimentally for many years. For two-dimensional flows there are many theoretical 
results. I n  some special inviscid cases, the exact governing equations are linear and 
exact solutions can be obtained (Long 1953, 1955; Yih 1960). But for three- 
dimensional flows, theoretical results have been obtained only when the disturbance 
caused by the obstacle is small and the linear approximation is valid (e.g. Crapper 
1959, 1962), or when part of the fluid does not go over the top of the obstacle because 
of the stratification (Sheppard 1956), or when the stratification is very strong and the 
flow is approximately confined to horizontal planes (Drazin 1961 ; Brighton 1978). 

Sheppard’s formula was derived by assuming a fluid parcel, the pressure within 
which is equal to that of surrounding fluid in hydrostatic balance. Under this 
assumption and using Bernoulli’s theorem, the following integral formula which 
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would predict the dividing-streamline height z ,  was obtained : 

ipeU2(z , )  = g p  (h-z)(  -g)dz.  
ZS 

Here U is the upstream velocity, pe is the density of the fluid on the dividing 
streamline, g is the gravitational acceleration and h is the obstacle height. If a fluid 
parcel is originally a t  a higher level than zs, i t  goes over the top of the obstacle; 
otherwise it may go around the sides. 

This formula is reduced to a simpler form 

z , /h  = 1 - F ( F  = U / N h )  ( I b )  

under conditions of uniform velocity and linear density gradient. Equations (1 a, b )  
assume that all the kinetic energy is converted into potential energy. When only a 
portion of the kinetic energy is converted, (1  b)  becomes 

z , /h  = l-aF, ( I c )  

with a < 1 (Hunt & Snyder 1980). a is not necessarily less than 1 because the kinetic 
energy along a streamline can be increased by the dynamic pressure field set up by 
the obstacle. But this effect would be small when F < 1 (Snyder et al. 1985). 

Baines (1979) obtained a = 2 for a barrier with a small gap between one side of the 
harrier and the sidewall of the tank. But the other side of the barrier was completely 
attached to thc sidewall. Snyder et al. (1985) suspect that the large value of 01 may 
be due to  the ‘squashing’ phenomenon evident in laboratory experiments on two- 
dimensional stratified flow. In  experiments using a finite-length towing tank, 
upstream fluid initially existing a t  heights between the top and bottom of the 
obstacle must spill over the top of the obstacle when the obstacle comes near the 
endwall of the tank, because the total mass a t  those heights has to be conserved. 
Therefore the initially linear upstream density stratification would break down and 
the density just upstream of the obstacle becomes nearly constant as is shown in 
figure 5 of Castro (1987). Baines (1987) disagrees with the opinion of Snyder et al. 
because his experiment was conductcd in a sufficiently or ‘infinitely’ long tank and 
the observations were made before the reflection of upstream disturbances from the 
endwall came near the obstacle. Therefore we need some further tests to find the 
value of a in ( 1  c), though i t  is not yet clear if the dividing-streamline height is really 
described by such a simple formula as (1  c). 

Drazin’s low-Froude-number theory assumes as a first approximation ( F +  0) that 
the inviscid flow past a body axisymmetric about a vertical axis is completely 
horizontal and expressed by the flow around a circular cylinder in each horizontal 
plane. It then presents the dcviation from that state by a series in powers of F 2 .  

Brighton has extended Drazin’s theory to higher orders of F 2 ,  and at the same 
time has showed explicitly that the vertical displacements A of streamlines from 
their upstream height could be expressed by 

2 F 2  a2 z(x2 - y2 -I- z2 -a2) 
(XZ + z 2 ) 2  

A(z,y ,z )  = 

in the case of the flow past a sphere with uniform velocity and linear stratification 
a t  infinity (see figure 1) .  

It is clear from ( 2 )  that on the upstream stagnation line ( x 2 + z 2  = a2 ,y  = 0 ) ,  there 
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P 

FIGURE 1. Geometry of the flow field, where the cylindrical coordinates are shown in 
parentheses. 

is no displacement, while on the centreplane (y = 0, x2+z2 > a'), A becomes positive 
or negative in accordance with the sign of z ,  and on the sphere surface (x2 + y2 + z2 = 
a'), A takes the opposite sign to z .  

Theories by Drazin and Brighton can be applied to finite-amplitude flows, but they 
break down near the top of the obstacle. Thus experimental or numerical studies are 
necessary on three-dimensional flows to know the patterns of the entire flow field. 

Recently Hunt & Snyder (1980) and Snyder et al. (1985) have conducted 
systematic laboratory experiments which could be compared quantitatively with the 
existing theories. Hunt & Snyder showed the qualitative validity of Drazin's theory 
for F < 0.4 and Sheppard's formula ( l c )  for F < 1.0 (with 01 = 1). They also 
investigated the flow patterns near the obstacle and discussed the relation between 
the wavelength of the lee wave and the mechanism of separation by analogy with the 
two-dimensional flow. 

According to linear theory, the wavelength of the lee wave in the flow direction can 
be approximated by h = 2nU/N = 2nFLL, where FL = U/NL and 2L is the length of 
the obstacle, if the channel depth is large enough compared with the obstacle height. 
When FL is large and h is larger than the length of the obstacle 2L, the wave tends 
to suppress the eddy region behind the obstacle, but the separation is still controlled 
by the boundary layer. As FL decreases and h becomes almost equal to ZL, the eddy 
is completely collapsed. When FL further decreases and h becomes shorter than 2L, 
the lee wave induces separation on the obstacle. 

For the flow past a hemisphere, which may directly correspond to the present 
study, Snyder, Britter & Hunt (1980) obtained experimental rcsults that confirm the 
above discussion of low-Froude-number flow and the lee wavelength. 

However, only a few results exist for the patterns of the internal wave behind a 
three-dimensional obstacle. Using triangular ridges, Castro, Snyder & Marsh ( 1983) 
investigated the variation of lee-wave amplitude and slope with spanwise aspect 
ratio. Their results for axial lee wavelength as a function of the Froude number 
showed good agreement with two-dimensional linear theory even when the aspect 
ratio was small. Castro (1987) studied the spanwise structure of lee waves for similar 
ridges and obtained the rate a t  which the wave amplitude decays across the span. 
The result compares well with the three-dimensional linear theory by Crapper (1959, 
1962), which predicts that lee waves are contained in a strip whose width is 
comparable with the spanwise length of the obstacle. 
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The Froude-number dependence of the drag coefficient C, of a sphere was 
measured by Lofquist &, Purtell (1984) and Mason (1977), and both results show the 
increase of G, due to  the lee-wave drag as F decreases. But the increased C, begins 
to decrease again when P is further reduced. The whole mechanism of these 
phenomena has not yet been fully understood. Although there are some numerical 
results for C, for a two-dimensional obstacle (e.g. Sykes 1978), no quantitative 
results for three-dimensional flows exist that can be compared directly with 
laboratory experiments when the obstacle height is not small. 

The principal aims of the present work are ( i )  to closely examine the details of flow 
patterns and pressure distributions that have never been obtained in laboratory 
experiments to  show how they affect the change of C,; (ii) to provide a quantitative 
estimation of the wavelength and the amplitude of the internal gravity wave and 
discuss the relation between the wavelength and the separation mechanism ; and (iii) 
to test numerically the applicability of the theories by Drazin (1961) and obtain the 
value of a in Sheppard's formula (1 c) a t  low Froude numbers. 

2. Equations of motion and boundary conditions 
Let us consider an incompressible and non-diffusive linearly stratified flow past a 

sphere with uniform upstream velocity (figure 1). The disturbances to uniform flow, 
including the lee wave and the upstream influence in subcritical range, may be 
limited to some finite region near the obstacle, This is because waves in three- 
dimensional flows can diverge laterally and have much lower amplitude compared 
with two-dimensional waves. In  addition linear theory (Su 1975) suggests that the 
damping effect of viscosity becomes stronger, particularly far from the obstacle. But 
it is still desirable to  get a nearly unbounded flow and reduce the amplitude of the 
possible upstream columnar motions by locating the upper and lower boundary as 
far away as possible. Thus in this study the outer boundary is set a t  about twenty 
sphere diameters from the sphere in the flow direction and about ten diameters away 
in the vertical and the spanwise directions (see $3.2) .  

Under the Boussinesq approximation the dimensional governing equations are 
written as follows : 

au/ --+(V'.V')V' = 1 --Vp'--ge.+I"V"~ P' 
at Po Po Po 

-+(u'.V')p' = 0, 
at 

V' * u' = 0, (3 c) 
where u' = (vi,v;,v:) is the velocity, p' and p' are the perturbation pressure and 
density respectively, po is the mean density, 9 is the acceleration due to gravity, 3 
is the unit vector along x-axis and ,u is thc viscosity. 

We then non-dimensionalize velocities by the uniform velocity U ,  distances by the 
radius of the sphere a ,  and perturbation pressure by poU to obtain the equations in 
dimension!ess form : 

av 1 2 -+ ( v - V )  u = -vp-- Z"+-V%, 
at F Z P  Re 

ar0 -+ ( u - V ) p  = 0, 
at 
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where 

The boundary conditions imposed on u and p are as follows: 

u = 0 on the sphere, (5a) 

u = (1,0,0), 6) = - z on the upstream boundary, (5b) 

( 5 c )  

In a numerical study of an unbounded stratified flow past a three-dimensional 
obstacle, neither the squashing phenomenon observed in laboratory experiments nor 
the permanent upstream disturbances seen in two-dimensional flow can occur (see 
also the beginning of this section). Then, if the upstream boundary is located 
sufficiently far from the sphere, we can fix the upstream condition to be uniform and 
independent of time. 

Condition ( 5 c )  allows the existence of the wave particularly far downstream, 
though in fact the amplitude of the wave decreases rapidly as x increases as will 
become clear in 94 (figure 11) .  

We shall solve (4) subject to  (5) for Re = 200 over a wide range of F(0.25 < F < 
200). 

av ap - - _ -  - - 0 on the outer boundary, except upstream. 
ax ax 

3. Numerical method 
3.1. Numerical procedure 

The numerical method used is essentially the same as that used by Harlow & Welch 
(1966). In  our problem the following diagnostic equation for the pressure is obtained 
by taking the divergence of ( 4 a )  and approximating the time derivative with the 
forward difference : 

where D = div u, and the superscript n denotes the integration time t = nAt. 
In the above equation D"+l is set equal to zero while Dn is retained to prevent the 

accumulation of numerical errors and to assure the divergence-free condition D = 0 
or (4c). 

Equat>ions (4a ,  h )  are rewritten in the form 

u"+l - 1 2 
At F Z p  Re 

+ ( V " . V ) V "  = -Vp"--  "Z"+-V2u", 

and (6) is solved numerically using finite differences. In  a numerical study some 
boundary conditions for p" are necessary to solve (6a). They are derived from (6b) 
with the first term on the left-hand side being ignored. In  fact vn+l-un is zero on the 
sphere surface and on the upstream boundary. On the downstream boundary it is 
negligibly small and tends to zero as the flow reaches steady state. 

The computational procedure is as follows : 
(i) Assume appropriate values of un and p" a t  t = nAt and solve (6a) by a 
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successive over-relaxation method to obtain the corresponding pressure p". 
Specifically, as an initial condition, we use uniform velocity and linear stratification, 
i.e. U" = (1,0,0) and p" = - z except on the sphere surface where vn = (0, 0,O) while 

(ii) Using the known values ofp", v" and pn, solve (66, c )  to obtain vntl and pn+' 

(iii) The process is repeated for the next integration time t = ( n +  1)  At. 
(iv) The calculation is continued until almost steady state (typically a t  about t = 

30) is attained. Typical CPU time required for each Froude number was 30 hours on 
a HITACHI M280-H computer at the National Institute for Environmental 
Studies. 

p" = - z .  

respectively. 

3.2. Coordinate. system and Jinite-di.erence scheme 

In  this paper cylindrical coordinates are used (figure 1 )  for the computation, and the 
grid generation originated by Thames et al. (1977) is conducted in (z ,  r)-plane to 
transform the plane to the (6, 7)-plane with equally spaced orthogonal grid lines. 
Here 6 and q are taken to be integers (1 d 6 d tmaX, 1 d q < qma,) and z and r are 
described by functions of [ and 7, i.e. 

z = 4 6 ,  q), r = r(6,  q). (7a, 6) 

To obtain an appropriate form for the transforming function, we first put 

6-0.5 

7 - l )  sin K ,  (-0.5 
r(O'(6, q) = 0.5 + 9.5 - i qmax 

where the diameter of the sphere 2a = 1.  Here q = 1 and 7 = qmax correspond to the 
sphere surface and the outer boundary respectively. Next we move these grid points 
toward the sphere surface along each [-constant line according to 

with 
d("'(6,q) = {[z(" ' (6 ,  q)-z( ')(<, I)]'+ [r(")(<, q)--r(O) (6, 1)l2);, 

(n = 0, l ) ,  and get z( l ) ( t ,  q) and r(l)([, 7).  Here d(O)((, q )  is the original distance between 
each grid point and that on the sphere surface, and d ( l ' ( 6 ,  7)  is the distance after the 
transformation. 

A two-dimensional grid so constructed in the ( z ,  r)-plane is rotated about the z-axis 
to obtain a three-dimensional grid with axisymmetry (figure 2). I n  the following 
calculation 35 x 61 x 48 grid points (t,,, = 35, qmax = 61) are used in the ((,q, 0) 
directions respectively. 

By the grid-generation method described above, we can concentrate grid points 
near the sphere so that the flow in the laminar boundary layer can be calculated 
accurately. When Re = 200, the depth of the boundary layer around a sphere with 
no stratification is roughly estimated by 1/Rei = 1/800$ = 7.1 x lop2, while in the 
above grid d")( 1,12) = 7.0 x Therefore several mesh points a t  least exist in 
the boundary layer even when the boundary layer becomes thinner due to the 
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FIGURE 2. Side view of the grid on the centreplane (y = 0) and on the sI)here surface. 

stratification. Though the grid becomes rather coarse far from the sphere, this will 
have no effect on the solution because the flow is almost uniform there. 

When (6) is written in the above cylindrical coordinates, 8 being measured from 
the direction of the y-axis of the Cartesian coordinates, it becomes 

v p  " - - A t  - -d iv [ (u"~V)un] -~d iv (p"~)+-V2D",  F2 2 
Re (8a )  

D" 

where u = (vz, v,vH) = (u, v, w )  and the Laplacian 

We then conduct a grid generation and transform derivatives according to 
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where the Jacobian J = z5r,-xz,rI. Derivatives with respect to O are unchanged 
during the grid generation because wc use a grid which has a constant AO( = 27c/ 
48). 

Finally we discretize (8) in ([, ~,B)-space to conduct the calculation. In  that process 
all space derivatives except convection tcrms are replaced by the central difference 
of second order, i.e. 

while the convection terms are approximated by a third-order scheme that has been 
used by Kawamura & Kuwahara (1984) for other problems, i.e. 

where f is an arbitrary function and ( i , j , k )  denotes the grid point in ( [ , 7 , O ) -  
space. 

The primary error of this scheme is estimated to be 

a4u, 

If1 ag”’ (10c) 

which is only slightly dissipative. With this highly accurate scheme, the 
incompressible condition (6c) or ( 8 e )  can be solved stably even when no diffusion 
terms are present. When an internal hydraulic jump occurs, artificial viscosity is 
necessary to reduce the numerical oscillation across the jump. But the use of a 
scheme with large dissipation often obscures the formation of the jump. The small 
dissipation effects of (106) will thus also work well in the calculation of the jump. 

4. Results 
4.1. The Froude-number dependence of the flow patterns 

When the stratification is very weak ( F  = 200, figures 3a,  Ga), the flow pattern is 
almost the same as that for no stratification with Re = 200 (Taneda 1956; 
Pruppacher, Le Clair & Hamielec 1970). The axisymmetric standing eddy which 
separates at about 120’ from the upstream stagnation point (figure 5) exists behind 
the sphere. The pressure distribution on the sphere also shows axisymmetry, and the 
dynamic pressure in the vertical (y = 0) and the horizontal (x = 0) planes almost 
completely coincide (figure 4 a ) .  At this high Froude number the fluid a t  all heights 
far upstream has sufficient kinetic energy to overcome the potential energy required 
to go over the top of the sphere, so the fluid originally at x = 0 covers most of the 
sphere surface except the eddy region, as is shown by the density distribution given 
in figure 3(aiii). When the flow is steady, it is clear from equations ( 3 b )  or ( 4 b )  that  
the velocity vectors are tangential to the isopycnic surface, so we can assume the 
isopycnic line in the centreplane to be something like a streamline in that plane 
because the steady flow is symmetric about y = 0 and the y-componcnt of velocity 
is zero on y = 0. Closed streamlines are not seen near the centre of the eddies in figure 
3 (aiii) because the density variation with position is small there. In  fact, closed lines 
also exist in addition to the plotted lines. These closed regions are isolated from the 
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other fluid three-dimensionally. I n  non-diffusive flow thc density of these regions is 
determined by the process of the formation of the standing eddy, i.e. by the initial 
condition. Therefore if the initial condition is abnormal, the result will become 
unstable. The initial condition used in this study is normal, a t  least in that  the 
density distribution is the same as for the laboratory experiments. The internal wave 
is not yet apparent in the figure because the wavelength is still very long. 

As the Froude number decreases, the standing eddy collapses mainly vertically 
and the separation line moves backward (figure 5 ) ,  because the wavelength of the 
internal wave becomes shorter and comparable with the diameter of the sphere, to 
suppress the vertical extent of the eddy. At Froude number 2.0, the effects of the 
reduced wavelength begin to appear, and the position of the minimum pressure in the 
vertical plane moves downstream (figure 4 b )  following the delay of separation (figure 
5). However, the density distribution still shows that almost all the fluid particles go 
over the top (figure 3 b ) .  

At about F = 1.0 (figures 3c, 4c, 6 b )  the standing eddy completely collapses (figure 
5) and only wave motions remain downstream of the sphere. It should be noted that 
the lee wave has nearly its maximum amplitude a t  this Froude number. 

At Froude number 0.7 (figures 3 d ,  44, separation appears again near the leeward 
stagnation point (figure 5). Under the first crest of the lee wave, the intervals of 
isopycnic surfaces and the directions of the velocity vectors suddenly change and an 
internal hydraulic jump occurs. (Because the hydraulic jump in a continuously 
stratified fluid has not been properly analyscd or understood, as Yih (1980) states in 
his book, we define it in this paper by the criterion described above.) At the same 
time symmetric horizontal vortices appear downstream near the horizontal plane 
z = 0. Separation in the vertical direction is induced by the internal wave whose 
length is comparable with the diameter of the sphere 2 a ,  while the horizontal vortices 
may be the products of the two-dimensionality of the flow due to strong stratification. 
The structure of the lee wave and the hydraulic jump can be seen in the side view of 
velocity vectors in figure 7 .  Comparing this figure with figure 3 ( d ) ,  it is found that 
the amplitude of the waves decreases very rapidly as y increases, and the waves are 
mainly confined to a narrow strip just behind the sphere, of width 2a in accordance 
with linear theory (Crapper 1959) and experimental results (Castro 1987). It is also 
seen that the existence of the hydraulic jump is localized to (y( < 0 . 3 ~ .  The tendency 
of fluid to go round the sides of the sphere becomes evident a t  this Froude number, 
and a substantial proportion of the isopycnic lines do not go over the top. Further, 
it is seen that isopycnic lines with H J a  = +O.l begin to deflect slightly before they 
impact on the sphere surface. These deflections balance the vertical pressure 
gradients caused by the two-dimensionality of the flow, as predicted by Drazin’s 
(1961) theory. 

At Froude number 0.5 (figures 3 e ,  4e), the separation line moves upstream (figure 
5 )  as the horizontal eddies grow larger. The upstream deflections of isopycnic lines 
become strong and the downflow ncar the windward sphcrc surface also becomes 
apparent in the side view of velocity vectors. The vorticity distribution (figure G c )  
also shows the existence of a region with vorticity of opposite sign near the upstream 
stagnation point. 

In  figure 3(d-f), the calculated hydraulic jump is not so strong as that in the 
experiments by Hunt & Snyder (1980), perhaps because of the difference in the shape 
of the obstacle and the much lower Reynolds number in this study. 

From side views of the flows (figure 3 d ,  e ) ,  it is sccn that the phase of the wave 
varies with height and the wave at  thc level of the top of the sphere has an advanced 
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(b) 

(iii) 

FIGURE 3 ( b ) .  For caption see p. 407. 
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(ii) 

(iii) 

FIGURE 3 ( c ) .  For caption see p. 407. 
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(ii) 

FIGURE 3 ( d ) .  For caption see p. 407. 
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(iii) 

FIGURE 3 ( e ) .  For caption see facing page. 
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(ii) 

(iii 

.--._____ __--____ --- 

FIGURE 3. Top view of velocity vectors in the horizontal plane ( z  = 0) and on the sphere surface 
(i), side view of velocity vectors (ii) and isopycnic surfaces (iii) in the centreplane (y = 0) and on 
the sphere surface. Since the velocity on the sphere is zero, the velocity vectors a t  one mesh point 
outside the sphere are presented ‘on’  the sphere surface with their lengths five times enlarged. 
Isopyenic lines are drawn for H,/a = 0, i 0 . l .  k0.2, ..., and broad lines show H , / n  = k 1 .  Here 
H ,  is the upstream height of the isopycnic line. (a )  F = 200; ( t i )  2 :  (c) I ;  ( d )  0.7: ( P )  0.5: 
( f )  0.25. 
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P 

P 

4 (degrees) 4 (degrees) 

FIGURE 4. Distribution of dynamic pressure on the sphere surface in the vertical (y = 0) and 
horizontal ( z  = 0 )  planes : -, vertical ; ----, horizontal. 4 is measured from the upstream 
stagnation point, Here the dynamic pressure is obtained by subtracting pressure due to  hydrostatic 
balances from the total pressure. We can discuss the  change of C ,  using the dynamic pressure on 

're surface and the sphere surface because the hydrostatic pressure works symmetrically on the spht  
does not contribute to  C,. (a )  P = 200; ( b )  2 ;  (c) 1 ;  (d )  0.7;  ( e )  0.5; ( f )  0.25. 

phase compared with lower waves. This fact may have some relevance for the phase 
variation with height in vortex shedding a t  higher Reynolds numbers that was 
observed by Brighton (1978). 

At the lowest Froude number P = 0.25 (figures 3f, 4f), the flow is approximately 
horizontal except near the top of the sphere, where the fluid has still sufficient energy 
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90 t -1 
I I I I I 1 1 1 1 1  I I I I 1 1 1 1  

0.1 1 10 
1 IF  

FIGURE 5.  Movement of separation points on the sphere with the Froude number in the vrrtiral 
(y = 0) and the horizontal (z = 0) planes: --O-, vertical; -- x-, horizontal. The angle $ of' 
separation is measured from the upstream stagnation point. 

to go over the top. Separation in the horizontal plane z = 0 occurs a t  about 90" from 
the upstream stagnation point, which is approximately the same angle as in the case 
of the flow around a two-dimensional circular cylinder a t  R e  = 200. This fact further 
confirms the two-dimensionality of the flow near z = 0 a t  this low Froude number. 
But we must keep in mind that the pressure on the sphere surface facing the 
horizontal eddy becomes larger with decreasing Froude number, and the resultant 
value is quite different from that of a circular cylinder. This is presumably due to the 
vertical interaction of the flow and this is the reason for the drag reduction near this 
Froude number (figure 8). 

4.2. T h e  Froude-number dependence of the drag coeflcient 

From figure 8 we can see that the dependence of AC, on l/F shows fairly good 
agreement with the previous experiments by Lofquist & Purtell (1984) and Mason 
(1977). Here AC, is defined by 

where C,(Re, 1/P) = D ( R e ,  l/F)/($o U2na2) 

and D denotes the net drag force on the sphere. Experimental results are not for a 
constant Reynolds number, while the numerical result is for R e  = 200. We should 
mention here that experiments for neutral flow show that C,(200,0) = 0.80 
(Schlichting 1968), and areliable value of C,(200,0) = 0.81 was obtained numerically 
by a non-stratified version of the program used in this study. 

In the range of 0 < l/F < 0.5, an only slightly negative value of AC, = -0.02, 
which may be within the range of numerical errors, is observed. But the results by 
Lofquist & Purtell show a clear reduction in G,. This may he due to the difference 
in the Reynolds number. In this study ( R e  = 200), the wake is not turbulent so that 
vertical suppression of turbulence, which was observed by Lofquist & Purtell for 
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p.01 
r o . 0 0  

co.00 rO.00 -0 00 <O.OO 

FIUURE 6. l)istribution of the y component of vorticit.g in the centre-plane (y = 0). Solid lines 
show positive values, while dashed lines show llegative values. (a )  F = 'LOO; ( 0 )  1 : ( c )  0.5. 
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FIGURE 7. Side views of velocity vectors in different vertical planes for F = 0.7.  To show the 
variation of wave patterns with the y-coordinate, the originally calculated velocities are 
interpolated and velocities on orthogonal grid points are presented. ( a )  y = 0 . 2 ~ :  (6) 0 . 3 ~ :  (c j  0.4~: 

0%a; 
- .. - 

( e j  1.0a; (f) 1.20,. 

10 
-0.2 

0.1 I 
1 l F  

FIGURE 8. Change of AC, as a function of 1/F:  -0-, numerical results; ~ ~ - -  . experimenh 
by Lofquist & Purtell (1984) ;-----, experiments by Mason (1977). 

14 FLM 192 
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Re > 1000, cannot, occur downstream. At first sight it may seem that C, reduces 
considerably due to the collapse of the standing eddy. But the lee waves begin to 
have large amplitude in this range of l/F as seen in figure 11,  and these two opposite 
effects, which tend to increase or decrease the pressure behind the sphere, cancel each 
other. 

In  the range of 0.5 < 1/F < 1.0, AC, increases considerably. In  this range (figure 
4 b ,  c ) ,  the pressure increases on the windward sphere surface while it decreases on the 
leeward surface. On the windward side of the sphere, the vertical motions of fluid 
particles are suppressed by stratification. Thus the fluid is forced to approach the 
sphere surface a t  angles closer to  90" to increase the pressure. On the lee side, the 
amplitude of the lee waves becomes larger as seen in figure 1 1  and more and more 
energy is taken up by the waves. So the effect of the lee wave in reducing the pressure 
overcomes the effect of eddy collapse. 

Near F = 1 the slope of the curve changes significantly and becomes small. 
According to the discussion - by Lofquist & Purtell, AC, due to the lee wave is 
estimated by F AC, - s f l a ,  where 6, is the vertical amplitude of the Brunt-Vaisala 
oscillation and the bar denotes its average. In  this study E, i.e. F'AC,, reaches its 
maximum near l/F = 1 (figure 11)  and this may be the reason of the change in the 
slope of the graph. But below F = 1 the hydraulic jump and the downstream 
horizontal eddies also appear. Therefore the three phenomena described above 
together affect the change in AC, for 1/F > 1.0. 

For 1.0 < 1/F < 2.0, ACD still increases though the amplitude of the wave 
decreases. In  this range an internal hydraulic jump that may consume large energy 
occurs and this causes the pressure deficit in the lee side (figure 4d, e) while the effect 
of the weak horizontal eddy is still small. 

I n  the range of 2.0 < l/F, AC, decreases owing to  the rather high pressure on the 
leeward sphere surface facing the strong horizontal eddies (figure 4f) as already 
mentioned in $4.1. In  this range the amplitude of the lee waves tends to zero and the 
hydraulic jump also becomes weak. Therefore these two effects may also contribute 
to  the increase of pressure on the leeward side. On the windward side, the pressure 
near the ground level z = 0 (shown by the dashed line) decreases because the flow is 
almost two-dimensional and the pressure distribution (for 0" < $ < 90") becomes 
similar to that around a circular cylinder. The difference in AC, between this study 
and earlier experiments comes from the Reynolds-number difference. When Re is 
200, as in this study, the separation line on the sphere in neutral flow is located a t  
about 120" from the upstream stagnation point, and if the flow becomes almost two- 
dimensional, separation occurs a t  about 90" near z = 0. So the separation line moves 
upstream. But when Re is above 500, as in most of earlier experiments, the 
movement occurs only slightly or not a t  all. Therefore the effect of the rather high 
pressure on the rear surface (figure 4 f) becomes stronger in this study compared with 
the previous experiments. 

Figure 9 shows the increment of pressure drag AC, and frictional drag AC, as 
function of l/F. Here AC, and ACf are defined by 

ACp = C,(Re,  1/F)--,(Re, 0), AC, = Cf(Re, 1/F) -C,(Re, 0) 

(with Re = 200) respectively. In  this study C, and C,  ( C ,  = C ,  + C,) are calculated 
using the formulae 
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FIGURE LO. Wavelength of internal gravity wave as a function of 113’: -0-, numerical results; 
_ _ _ _  , linear theory. Numerical results are represented by the distance in the z-direction between 
the first two crests of the wave along the isopycnic line of H J a  = 1 in the centreplane (y = 0). 

and 

wherc i is the flow direction, n, is the unit vector normal to the sphere surface, arid 
the surface integral is calculated on the sphere surface. The density variation with 
position is ignored in these formulae because we are under the Boussinesq 
approximation and all the particles on the sphere surface have nearly the same 
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FIGURE 12. 
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the Froude number. 
Impingement height z, of isopycnic lines in t h e  centreplane (y = 0) as a function of 

H,/a a t  the top 
Froude number of the sphere a 

0.25 
0.4 
0.5 
0.6 
0.1 
0.8 
0.9 
1 .0 

0.70 
0.59 
0.52 
0.44 
0.35 
0.28 
0.23 
0.18 

1.20 
t .03 
0.96 
0.93 
0.93 
0.90 
0.86 
0.82 

TABLE 1 .  Froude-number dependence of a in Sheppard’s formula: zs/a = 1 -aF 

density as that  on z = 0. In laboratory experiments (e.g. Lofquist & Purtell 1984) the 
density difference between the top and bottom of the sphere is, at most, A p  = 

po x 7.6 x lop3. Therefore we can neglect the effect of density variation with 
position when we compare the calculated C, with experimental results. 

When figure 9 is compared with figure 8, it is clear that  most of AC, comes from 
ACp and not from ACf. This suggests the possibility of predicting the increase of 
C, or the lee wave drag using only iriviscid theories. 

4.3. The relation between the wavelength of the lee wave and the mechanism of 
separation 

In  figure 10 it is seen that the wavelength h of the internal gravity wave coincides, 
at least qualitatively, with linear theory. Examples of the calculated wave patterns 
are shown in figure 11 and comparison with figure 5 will clarify how the wavelength 
on the centreplane (y = 0) is concerned with the separation mcchanisrn; i.e. when 
F > 1 and h / 2 a  2 2 .5 ,  decreasing F and h tends to suppress the eddy behind the 
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I I 

FIGIJES 13. Comparison of the  numerical results of the isopycnic lines in the centreplane (y = 0) and 
on the sphere surface with Drazin’s (1961) theory at low Froude numbers (F ,< 0.5) .  -, 
numerical results; ---, theory by Urazin. (a )  F = 0.5;  (0) 0.4; (c) 0.25. 
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sphere, but when F < 1 and A/2a 5 2.5,  further decrease of F or h would induce 
separation on the sphere. The criterion h / 2 a  = 2.5 is several times larger than the 
ideal case described in the introduction (with L = a) .  The difference may come from 
the very steep slope of the sphere surface near z = 0, where the linear approximation 
breaks down. It also appears that the effective length of the obstacle becomes longer 
than its real length when the obstacle height is comparable with its length. For 
example, in the experiments by Hunt & Snyder (1980), the model hill used had a 
height comparable with its length and the standing eddy completely collapsed a t  
F = 0.9 though the lee wavelength was in quite good agreement with linear theory. 
Anyway, the results show the validity of the extension of the two-dimensional 
consideration to three-dimensional flow near the centreplane (y = 0). 

4.4. Comparison with low-Froude-number theories 

From figure 12 we can see that in the limit of F = 0, the flow becomes completely 
horizontal and impingement height zi is equal to H,. As F increases, the value of 
H ,  at the top of the sphere ( = zs)  decreases. 

From table 1 we can see that Sheppard’s formula represented by ( l c )  is 
approximately valid with a = 1,  but as F increases from 0.25 to 1 .0, a decreases from 
1.2 to 0.82. The difference between the theory and numerical results near F = 1 
comes from the fact that even when F > 1,  part of the fluid does not go over the top 
of the sphere but goes around the sides because of the stratification. As was already 
mentioned in the introduction there is a controversy over the value of a in (1  c ) .  The 
numerical results are best for a = 1 to a = 2 .  In  this study the sidewalls are very far 
from the obstacle and we can consider the result as the flow past a completely 
isolated three-dimensional obstacle. The situation is, at least approximately, 
considered to be the same in the experiment of Snyder et al. (1985). The experiment by 
Baines (1979) was conducted for the case with a sidewall very close to the obstacle. 
Then the fluid is forced to go straight along the sidewall when it has to go around the 
side of the obstacle. As shown in figure 3 ( f ,  i),  the y-component of velocity in 
the z = 0 plane is large even for y > 2a. Therefore his result may be affected by the 
existence of the sidewall and not represent an isolated obstacle. 

Finally, from figure 13, we can see that Drazin or Brighton’s theory expressed by 
(2) is a t  least qualitatively valid for F < 0.4, i.e. as the fluid approaches the sphere 
it first deflects away from the plane z = 0 and then comes back to its original height 
when i t  impinges on the sphere surface, and further deflects toward z = 0 as it goes 
around the sides. But the deflection on the side of the sphere is weaker in the 
numerical results because of the effect of horizontal eddies just downstream. 

5. Conclusions 
Systematic numerical studies agree with the previous theoretical and experimental 

results on stratified flows over a three-dimensional obstacle. Though the Reynolds 
number in this study (Re = 200) was low compared with the previous experiments, 
the resulting flow showed very similar dependence on the Froude number. Of course 
the location of the separation line on the sphere surface varies with the Reynolds 
number, which affects the pressure distribution that determines the drag coefficient 
C,. But outside the boundary layer and the wake region, the overall pattern of the 
flow is controlled by the lee waves, which depend only on the Froude number near 
the obstacle. Therefore the Reynolds number does not have so large an effect as to 
completely obscure the effects of stratification. 
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The main results of this study can be summarized as follows. 
( i )  Thc increment of the drag coefficient ACD mainly comes from the increment of 

thc pressure drag AC, and not from that of frictional drag ACf. This helps confirm 
the explanation in the literature for the increase of drag using the inviscid theory of 
Ice waves. 

The reduction of the drag coefficient for F < 0.5 from its maximum value is due to 
high pressure on the rear surface of the sphere in the horizontal eddy region. If the 
two-dimensional flow near z = 0 is identical with that of a circular cylinder, the 
rearward pressure must become much lower. So the ‘two ’-dimensional flow must 
havc a rather strong vertical interaction. 

To study the detailed effect of Re on AC,, it  is desirable to make calculations for 
othcr higher-Reynolds-number flows (Re > 200); and to avoid the influence of Re 
completely, it is necessary to calculate for Re > 1000, where CD(Re, 0) is nearly 
independent of Re. But the computation of turbulent flow is outside the scope of the 
present study. 

( i i )  The lee waves suppress separation when the Froude number F becomes small, 
but further reduction of F induces separation, as is shown by earlier experiments. 

The region where the lee waves exist is confined in the spanwise (y) direction to a 
rather narrow strip just behind the sphere, of width roughly the same as the diameter 
of the sphere, as linear theory predicts. Further, when a hydraulic jump occurs, the 
wave breaking is only seen near the centreplane (y = 0) and the region where it exists 
is vcry localized. 

(ii i)  At low Froude numbers Sheppard’s formula and Drazin’s theory are a t  least 
qualitatively valid for F < 1 and E’ < 0.4 respectively. The parameter a in Sheppard’s 
formula ( l c )  is not always constant and can vary with the Froude number, but the 
value is approximately l\when the obstacle is isolated from other bodies. Drazin’s 
theory is valid for small F, but when the downstream horizontal eddy becomes 
larger, it affects the flow a t  the side of the obstacle, and the theory cannot be applied 
there. 

The author would like to thank Dr H. Ueda for giving me this interesting problem, 
and also Professor H. Takami and Dr T. Miyazaki for their helpful discussions. 
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